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Thermoelectric magnetohydrodynamics 
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Thermoelectric currents in the presence of magnetic fields can cause pumping or 
stirring of liquid-metal coolants in nuclear reactors or stirring of molten metal in 
industrial metallurgy. The interaction between the thermal and magnetohydrodynamic 
fields is a mutual one owing to alterations in the thermal convection and to the Peltier 
and Thomson effects (although these are usually small). This paper sets up the equations 
of magnetohydrodynamics and thermal convection when coupled by thermoelectricity 
and solves some illustrative problems in which the thermal field is known ab initio. 
Examples where the effects are due to either continuous or discontinuous variation of 
material composition are included. Practical magnitudes are discussed for the case of 
a fusion-reactor blanket, where the effects are potentially important owing to the 
unusual thermoelectric power of lithium. 

1. Introduction 
First-generation fusion reactors will probably react deuterium (D) with tritium (T), 

which must be bred in a blanket from the irradiation of lithium by the neutrons 
excaping from the reactors. As most of the energy released in the DT fusion reaction 
is borne by those neutrons, the blanket is the main source of the heat to be used in the 
associated heat engine. It is therefore natural to consider using the lithium (which 
melts a t  180 "C) as the coolant which conveys this heat to  the heat engine. 

The main difficulty with this proposal as applied to  magnetic confinement systems 
is that pumping the lithium across the high magnetic fields which are envisaged, 
especially in Tokamak reactors, requires pressures which could take the materials used 
for the pipework beyond their creep limits, not to mention the power degraded in 
pumping. (See, for instance, Hunt & Hancox 1971; Hancox & Booth 1971, Stanbridge 
et al. 1974.) The blanket has to be immersedin the magnetic field because i t  protects the 
windings from neutron bombardment. 

It so happens that lithium is unusual in having a high and positive absolute thermo- 
electric power. This raises the possibility that, wherever sufficiently high temperature 
gradients occur (or are deliberately promoted) and the lithium is in contact with a 
solid conductor of markedly different thermoelectric power, preferably negative, 
electric currents will circulate. I n  conjunction with the prevailing magnetic field, these 
could strongly affect the motions in the lithium. Vigorous stirring might result, 
rendering wholly invalid any estimates of temperature distributions arrived a t  by 
assuming static lithium (the natural assumption in the presence of a strong magnetic 
field). This is a matter of some concern because the problems of thermal stress, expan- 
sion and creep will have to be fully mastered for successful design of fusion-reactor 
blankets. More interesting, it is conceivable that the fluid could be encouraged to pump 
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itself across the magnetic field without excessive pressure changes, thereby overcoming 
the main objection to the use of the liquid lithium as a coolant. 

This paper is a preliminary survey of the theory of thermoelectric magnetohydro- 
dynamics (TEMHD) and of some of the simpler problems that arise. It appears to  be 
a largely unexplored field of fluid mechanics, having potential applications in industrial 
metallurgy as well as fusion technology. 

There have been several papers on TEMHD pumping, but none of these has explored 
the detailed fluid mechanics. Most of the work was done in the context of fast fission 
reactors, cooled by liquid metals (Murgatroyd 1951; Luebke & Vandenberg 1954; Rex 
1961; Osterle & Angrist 1964; Perlow & Davis 1965; de Cachard & Caunes 1969; 
Makarov & Cherkasskii 1969). I n  several of these papers the TEMHD effect was to be 
enhanced by the use of semi-conductors such as lead telluride, or well-matched pairs 
of solid metals such as chromel/constantan, with the liquid metal playing a passive 
(isothermal) role from the thermoelectric point of view. I n  this paper we concentrate 
attention mainly on cases where the thermocouple action is due purely to  the liquid 
metal and a single solid metal, which forms the ducting. The design constraints on a 
fusion-reactor blanket would appear to  discourage the use of more elaborate 
combinations. 

Section 2 presents the basic theory of TEMHD and shows how the extra fluid- 
mechanical effect operates via the boundary conditions in most cases. Section 3 
presents data on the magnitude of the effects in lithium and discusses in order-of- 
magnitude terms their practical implications. Section 4 outlines the ways in which 
some simple problems in MHD duct flow are modified by thermoelectric action at the 
walllfluid interface while § 5 discusses the possibility of applications to industrial 
metallurgy and solves a typical problem, which also serves to exemplify those problems 
in which the effects are due to  continuous variation of material composition, in contrast 
to sudden changes at an interface. 

2. The theory of TEMHD 
As formulations of thermoelectricity in field-theory terms are not widely available, 

a fairly full discussion is given. 
To express the fact that conduction current, of intensity j, can be caused by 

temperature gradient grad T as well as by an electric field E or an e.m.f. v x B due to 
motion a t  velocity v in a magnetic field B, Ohm’s law must be generalized to 

j/r = E + v x  B-SgradT,  (1)  

in which S is called the absolute thermoelectric power of the conducting medium in 
question, and u is its electrical conductivity measured under isothermal conditions. 
A Hall term could be added, but this is not necessary in applications in liquid metals. 

I n  a stationary medium of uniform composition under an irrotational electric field 
(magnetic induction due to aB/at being absent), no current is observed to flow, what- 
ever the distribution of T ,  for S grad T is also irrotational because S is here a function of 
T only and grad S x grad T vanishes. We may set 

W ( T )  = SdT, (2) s 
integrated from some datum temperature. 
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T=T, T= T2 - 
Current 

FIQURE 1. A simple thermocouple. 

Then ]/CT = E-grad W (3) 

= -grad (V + W )  = -grad U ,  say, (4) 

E being irrotational with potential V .  In  formulations of MHD and other problems 
where the temperature is non-uniform it is common practice to write only V in (4), 
but it should be appreciated that strictly V should be replaced by U ,  which includes 
the thermoelectric term W .  Although confusion over the energetics can arise if V or 
E is used wrongly, ignoring thermoelectricity, this procedure usually causes no 
problems unless a medium of varying or different composition is introduced (e.g. by 
the insertion of potential probes or conducting walls or owing to concentration 
gradients in a diffusion boundary layer, etc.). 

When the composition of the stationary medium or media varies from place to place, 
S grad T becomes rotational in general for grad S need no longer be parallel to grad T. 
Then currents must circulate even if the conductor is stationary and aB/at is absent. 
The extreme case occurs when the composition and X vary discontinuously across an 
interface along which T varies. This is the key phenomenon in relation to TEMHD for 
homogeneous liquid metals flowing in conducting containers, for only at  the interface 
are grad S and grad T not parallel. The thermoelectric e.m.f.’s are determined by the 
temperature distributions along the interface, irrespective of the temperatures 
elsewhere. 

A familiar manifestation is the bimetallic thermocouple, shown in figure 1, with its 
two discrete points of contact on the interface between the two media A and B, the 
contacts being at  different, specific temperatures, Tl and T,. A current flows around the 
circuit under the influence of the Seebeck e.m.f., which equals 

integrated round the circuit in the current-flow direction under conditions where 
i?B/at and v x B are absent. Then ( 1 )  indicates that 

where P = S, - S,, the thermoelectric power of the metal pair. Potentiometric mea- 
surements of the Seebeck e.m.f. cannot yield the values of the absolute powers S, and 
X,, only their difference. Note also that there is no discontinuity in the electric potential 
across each interface, if contact resistance and electrochemical effects are excluded. 
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Equation (5) is readily generalized to cases with more than two metals in the circuit, 
as commonly occurs with thermocouple instrumentation. 

The other facet of thermoelectricity is the fact that electric current flow causes 
additional heat flow, where by ‘heat’ is meant all energy transport other than that 
described by the Poynting vector and the mechanical work transfer associated with 
the motion of stressed media. The heat flow intensity Q is given by a modified version 
of Fourier’s law: 

in which K is the usual thermal conductivity, measured under conditions where j is 
absent. The formulation (6) is preferred to one involving E or grad V simply because 
of the way that K is defined. The coefficient S appears also in (6), making the current- 
driven part of the entropy-flow intensity Q / T  equal to Xj, because of the Onsager 
reciprocal relations of irreversible thermodynamics. For a full discussion see Woods 
(1975), who relates it to the essential reversibility of the thermoelectric coupling, 
originally perceived by W. Thomson (Lord Kelvin) for an ideal thermocouple with 
K = Q a n d u =  co. 

S is also called the entropy transport parameter. Since j is in the opposite direction to  
the drift of conduction electrons, it might naively be expected that S would be 
negative for metals. This is true for most metals, but lithium, for which S is large and 
positive, is a conspicuous exception. 

The Thomson effect follows from (6). Consider a current- and heat-conducting 
medium a t  rest under a given temperature distribution a t  a given instant. We exclude 
magnetization and ignore polarization energy. There is an electrical energy input to 
the medium a t  a rate E . j per unit volume and time. Hence the rate a t  which energy 
is being stored locally in the medium is 

Q = -KgradT+STj ,  (6) 

I@ = - d i v Q + E . j  

= (div(KgradT)-div(STj)}+ j2/‘++ jS.gradT, (7) 

if (1) and (6) are invoked. We take the normal, ‘low-frequency’ approximation that 

divj  = 0 

W = j2/u+div(KgradT)-jT.gradS. 
and then ( 7 )  leads to 

For agiven local temperature distribution, the ‘extra’ local heating due to j exceeds the 
Joule heating j2/u by the final term - j T  .grad S.  Note that this effect still occurs even 
when j is due to e.m.f.’s other than thermoelectric ones or when S varies because of 
variable composition, provided j has a component parallel to grad S. The effect comes 
about because the variation of X in (6) means that a given current flux transports 
a varying entropy flux. The case where S varies discontinuously a t  an interface is 
discussed later. 

In  practice local temperatures do not stay the same when j is introduced so this effect 
shows itself instead as a change in grad T that enables the Joule heat to get away and 
allows for some of the heat being now transported by j .  

When the medium is of uniform composition and S is a function o f T  only, the extra 
final term in (9) can be written as 

- T(dS/dT) j .grad T ,  (10) 
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which describes the Thomson effect. The quantity T(dS/dT) is called the Thomson 
coefficient. 

Several other of the equations of MHD are unaffected by thermoelectric phenomena, 
namely 

(11) 

(12) 

(13) 

pj  = curlB (14) 

Dp/Dt = - p div V, 

pDv/Dt + gradp = j x B + visc., 

- aB/at = curl E, 

(which we shall ignore in this paper, always assuming that the magnetic Reynolds 
number is low and the field B known a b  initio), and 

divB = 0, (15) 

in which p = fluid density and p = fluid pressure. ‘visc.’ denotes standard viscous 
terms. 

The energy and entropy equations are modified, however. The first law of thermo- 
dynamics for a travelling fluid element, expressed per unit volume, becomes 

- d i v Q + E . j  = (divpv+visc.)+p(D/Dt) (u+iv2),  (16) 

in which ‘visc.’ denotes work done by viscous stresses and u is specific internal energy, 
related to the specific entropy s by the usual equation 

Tds = du - (p/p2) dp. (17) 

Inserting E from ( l ) ,  div v from (ll),  grad p from (12) and Q from (6) leads to the 
entropy equation 

pTDs/Dt = div(KgradT)+j2/a-jT.gradS+visc., (18) 

in which the term - j T  .grad S again appears. ‘ visc.’ now denotes standard dissipative 
terms. If the effect of pressure changes on the entropy can be ignored, as is the case in 
most problems involving liquids, we may put pTds = CdT, where C = volumetric 
heat capacity, and then 

CDT/Dt= div(KgradT)+j2/a-jT.gradS+visc., (19) 

the heat convection equation. Note that the grad S term can in principle be active even 
when j is due to non-thermoelectric e.m.f.’s. Generally it has been inadvertently but 
harmlessly omitted from studies of heat convection in electrically conducting fluids 
under magnetic fields. In  a fission or fusion rector ( 16), (1 8) and (1 9) would gain a heat- 
release term from the bombardment by neutrons or other particles or photons. 

Boundary conditions 

We have already remarked that, with homogeneous media, the thermoelectric e.m. f.’s 
show themselves only via boundary conditions a t  interfaces between media of different 
absolute thermoelectric power. The electric boundary condition must be generalized 
to allow for this. 

Consider a fluid moving over a stationary conducting wall in the presence of a 
magnetic field with a component B,, normal to the interface, directed into the fluid. 
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Wall / Fluid 

FIUURE 2.  A portion of a wall/fluid interface. 

Equation ( I )  may be integrated round the narrow loop of length ds shown in figure 2, 
straddling the interface. Viscosity requires the velocity to be strictly zero a t  the 
interface, but, where the Hartmann number based on B, is large, it will often be 
appropriate to take the Hartmann layer so thin that i t  lies wholly within the loop, i.e. 
to  allow non-zero velocities to persist virtually up to the wall. Let vt be the tangential 
velocity component normal to the plane of figure 2, out of the paper. 

I n  the integral of (l), $ E . dr contributes negligibly, for the area integral of (13) is a 
second-order small quantity, and so 

in which n and s denote normal and tangential components in the plane of figure 2, 
w denotes wall quantities and 7 is the contact resistance (if any) of unit area of 
interface. I n  order to make the interface temperature T unambiguous we exclude 
thermal contact resistance (the thermoelectric consequences of which appear to  be 
largely unexplored). Again P is the thermoelectric power of the pair of metals, S - S,, 
and d is their Seebeck e.m.f. IPdT,  relative to some datum temperature. A further 
condition similar to (20) could also be written down in the plane perpendicular to 
figure 2 and containing the n direction. 

Another boundary condition which is altered by the advent of thermoelectricity is 
the thermal one which constrains temperature gradients normal to  the interface. Again 
we exclude thermal contact resistance. Since the interface can have no heat capacity, 
the energy inputs and outputs per unit area are in balance and hence, from ( 6 ) ,  we have 

or 

8TW 8T 
rj~+S,Tj,-K,- = STj,-K--, an an 

Kw- - K n  = (S,-S)Tj,+rj,2. 
aT, aT 
an 

The term (S, - S )  Tj, describes the Peltier effect, which arises because the ability of the 
current to transport heat changes abruptly a t  the interface. The normal gradients of 
temperature have to adjust when j ,  is introduced, even if the dissipation associated 
with contact resistance r is absent, I n  arriving a t  (21) we have tacitly used the boundary 
condition that j ,  is continuous, in line with (8). The quality T(S,-S) is called the 
Peltier coefficient. 

All other boundary conditions remain exactly as they are in ordinary MHD and 
heat- transfer problems. 
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FIGURE 3. Some absolute thermoelectric powers for pure metals. (N.B. Small amounts of additives 
can produce large changes.) sol = solid; liq = liquid; A1 = aluminium; Cu = copper; Fe = iron; 
Hg = mercury; K = potassium; Li = lithium; Na = sodium; Nb = niobium; Ni = nickel; 
Pb = palladium; Pt = platinum; W = tungsten. Sources: (a)  Ioannides et al. (1975); ( b )  Carter 
et al. (1970); ( c )  Raag & Kowger (1965); (d) Marwaha (1967); ( e )  Marwaha & Cusack (1966); 
(f) Blatt et al. (1967); (9)  Cusack & Enderby (1960); (h) Bradley (1962); ( i)  Cusack & Enderby 
(1958); (j) Kaye & Laby (1972, p. 48). 

3. Practical magnitudes 
Figure 3 presents some data on the absolute thermoelectric power S of various 

metals. Lithium is seen to be unusual in having a large and positive power whereas 
most metals have negative powers. The Seebeck effect, our main concern here, is 
therefore strong when liquid lithium adjoins a solid metal with negative power, such 
as stainless steel or niobium. It is noteworthy that lithium is so different thernio- 
electrically from its fellow alkali metals, sodium and potassium. It is like most metals, 
however, in having a significant change in power on melting (in contrast to sodium, 
which has none). 

To establish the general order of magnitude of TEMHD effects, consider the flow of 
lithium along a metal duct of rectangular cross-section under a transverse magnetic 
field B parallel to one pair of walls and a uniform transverse temperature gradient 
aT/%s parallel to the other pair of walls. Let there be no pressure gradient. If we neglect 
viscous (or turbulent) drag on the basis that the Hartmann number is very high, the 
fluid accelerates until v x B e.m.f.'s balance the Seebeck e.m.f. and all current flow 
ceases, for no streamwise j x B force is required in the steady state. (A fuller discussion 
of such flows appears later.) Then the boundary condition (20) indicates that the 
velocity is given by the equation 

Note that the conductivity of the liquid or walls and the contact resistance have 
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become immaterial, although their values would determine the time taken to reach 
the steady state. An upper constraint on the impedance of the walls emerges in the 
next section. 

It should be noted that (22) contains B in the denominator, i.e. higher fields imply 
lower velocities, as Osterle & Angrist (1964) remarked. One way of looking at  this is to 
regard the current-free condition as the superposition of pressure-driven flow in a 
conducting pipe, where the drag varies like vB2, and TEMHD pumping, where the 
propulsive force varies like B, a lower power of B. This view of the matter also throws 
light on why the impedance of the current circuit (via liquid, walls and contact 
resistance) is immaterial, for it enters in the same way into both the drag and the pro- 
pulsion. The fact that (22) indicates that v + co as B + 0 is spurious, for the Hartmann 
number would have long ceased to be high in this limit. 

Inserting representative magnitudes for 

P = 25pV/K, B = 1 tesla and aT/as = l@"K/m 

(i.e. the rather highgradient of 100 "C/cm, chosen to show how strong theeffect could be) 
gives velocities of 25 cm/s, a value which is definitely in the range of practical interest. 
Velocities of this order have been mentioned in studies of the problem of circulating 
lithium coolant in fusion reactors (e.g. Hunt & Hancox 1971). The heat flow rate with 
this temperature gradient is 0.5 MW/m2, which is of the same order as the bremstrah- 
lung, alpha-particle and other energy being deposited in the first wall of a highly rated 
fusion reactor. Notice however that in this case the heat is flowing across the lithium, 
which is moving parallel to the first wall and is not itself acting as a coolant. Devising 
geometries in which the lithium is both propelled by TEMHD and acts as a coolant 
itself is easier said than done ! 

In contrast to the Seebeck effect, the Peltier and Thomson effects turn out to be 
negligible in the context of liquid metals, so the corresponding extra terms can be left 
out of the differential equation (19) and the boundary condition (21) which govern the 
heat-transfer aspect of the problem. As is well known, the same is true of the viscous 
and Ohmic dissipation terms in most problems. The reaction of the MHD fields back 
on to the heat and temperature distributions is therefore confined purely to the effect 
whereby the heat convection is altered by changes in the fluid mechanics due to j x B 
forces. The mutual coupling between the thermal and MHD fields is thereby greatly 
simplified. 

As evidence for these assertions, consider again fluid in a rectangular duct under 
conditions where the current flow is maximized by assuming negligible impedance in 
the walls (so that only the resistance of the liquid need be included) and by having the 
fluid at rest. Then (20) indicates current densities in the fluid equal to j = - aP aT/as, 
for figure 2 could represent part of the side wall of a rectangular duct whose top and 
bottom walls were maintained at  different temperatures. At such a wall the Peltier heat 
rate per unit area would be of order - PTj or aP2T aT/as. This has to be compared 
with the prevailing thermal conduction rate, of order K aT/as. Their ratio aP2T/K 
takes the small value of 0.02, if we insert the magnitudes 

P w 25pV/K, a E 2 x 106mho/m, K w 50 W/m"K and T w 800 "K, 

appropriate to lithium in a fusion reactor. 
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If the temperature difference between the top and bottom walls is A T ,  the total 
Thomson heat rate over the whole depth per unit area of top wall may be estimated 
from (10) as j T ( d S / d T )  A T .  The ratio of this to the Peltier heat is of order 

dS A T  
(dT)p' 

which numerically equals 0.1 if we insert the typical values 

AT M 200 "K and dS /dT  M 13 x V/'K2 

(see figure 3). We shall henceforth neglect the Peltier effect and the even smaller 
Thomson effect. By the same token we can ignore the effect on the heat flow of the small 
fractions that are converted into hydraulic power in TEMHD pumping applications, 
where the pressure rises downstream. The thermal efficiency of such a heat engine is 
virtually zero, and the caloric theory of heat can stage a late rally ! 

4. Some simple standard problems in TEMHD duct flow 
Hartmann flow 

We have remarked that in thermoelectrically driven duct flow without a pressure 
gradient the velocity is inversely proportional to the transverse field B when viscous 
drag is negligible at high Hartmann number. At the other extreme, when B is so low 
that the v x B e.m.f. is unimportant compared with the Seebeck e.m.f., which then 
determines the currents, the essential balance is between j x B and viscous forces. We 
should therefore expect the velocity to be directly proportional to B a t  low Hartmann 
number in the absence of a pressure gradient. This is confirmed by the extension of the 
classic Hartmann problem which follows. 

Consider rectilinear z-wise laminar motion between conducting parallel planes 
x = + a  under the influence of an x-wise, uniform, transverse field B and a uniform 
temperature gradient dT/dy .  Let each wall have a thickness t and the fluid have 
viscosity q. The motion is assumed to be fully developed, with all variables a function of 
x only, apart from T and U [see (4)], which vary linearly with y ,  and the pressure p ,  
which may vary linearly with z. We take P and K constant for simplicity. Heat flows 
purely in the y direction and there is no heat convection, for DTIDt  = 0. The fluid 
velocity v vanishes a t  the walls. The Hartmann number M is Ba(a/r )* .  

If j denotes the y-wise current in the fluid, and j ,  its value a t  either wall, Ohm's law 
requires that 

The streamwise force balance is expressed by 

j = ~ ( B v  - d U l d y )  = aBv + j,. (23) 

j B  = 7 d2v/dX2 - dp/dz. 

Hence qd2v/dx2 - aB2v = Bj,  + dp/dz = constant, 

from which 

i.e. the usual Hartmann velocity profile. The mean velocity is given by 

v, = -'(Bj,+$) tanh M 
aB2 

(24) 
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FIQURE 4. The function P ( M )  for Hartmann flow; also the maximum velocity due to an impurity 
spot. (The curves designated' Spot' and the right-hand ordinate scale apply.) C = atu/ta,. 

The mean current density in the fluid [from (23)] is 

j, = UBV, +j, = - @/a)  j,, 

for all the current returns via the walls at an intensityj,, say, if we assume that there 
is no other external return circuit. Moreover, (20), with v and j, set to zero, gives 

Eliminating j, and j, from (25)-( 27) gives 

(28) 1 M-tanhM PdT 1+Cdp 
M + C t a n h M  ( B d y  CrB2 dz ' 

_---- v, = 

in which C = ag/ta,, a measure of wall impedance in comparison with that of the fluid. 
I n  the case where all flow is prevented (i.e. a TEMHD pump a t  standstill) the rising 
pressure gradient is 

dp u B P ~ T  
dz l + C d y '  

independently of M (for 7 is irrelevant if the fluid is a t  rest). 
If we turn next to the case of no pressure gradient, (28) becomes 

M - tanh M 
M(M+CtanhM) '  

where F ( M )  = 

(29) 
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FIGURE 5 .  Cross-section of a conducting duct of arbitrary shape. 
The velocity v is out of the paper. 

The function F is plotted against M for various values of C in figure 4. The transition 
from direct to inverse proportionality to M or B is clearly revealed. The case C = 0 
corresponds to zero wall resistance and generates the greatest flow rate. For M large, 
F essentially equals 1/(M + C), in which M and C respectively represent the relative 
impedances of the Hartmann layers and walls. I n  a fusion-reactor blanket, C would 
probably be fairly large (c.  10) because duct walls would be kept as thin as possible 
to avoid loss of neutrons capable of breeding, but M would be much larger (c.  lo3-lo4). 
It is fortunate that endeavours to get the lithium to pump itself across the magnetic 
field with negligible pressure gradients do not depend on providing walls of low 
impedance. 

In  subsequent work we shall assume that the magnetic field is large enough for the 
condition M 9 C to be satisfied, and then F E 1 /M and V,K 1/B (the characteristic 
high-M regime). Under these conditions, the Hartmann layers (and viscous effects 
generally) can be ignored in the application of boundary condition (20). When M is 
large compared with both C and unity, a negligibly small extra thermoelectric current 
is driven between the walls and Hartmann layers, sufficient to overcome the relatively 
weak viscous drag. 

Two-dimensional duct $ow problems (conducting walls) 

More generally, one can consider fully developed laminar duct flows a t  high M where 
the transverse current distribution is two-dimensional. Figure 5 illustrates the general 
case. We confine attention to cases where the imposed, transverse magnetic field B is 
uniform and in the x direction, the fluid is in electrical contact with all parts of the wall, 
without contact resistance, and the wall thickness t is assumed constant and smaIl 
compared with a typical duct dimension a. This avoids having to find matching 
solutions of Laplace's equation in the conducting walls. Since the flows are fully 
developed with no streamwise variation, there is no heat convection, and the thermal 
side of the problem is just as if the fluid were stationary. We shall assume that this part 
of the problem has been solved and the prevailing interface temperature and corre- 
sponding value of & are known as functions of position along the periphery of the fluid. 

We continue to assume that M is large enough for viscosity to be neglected. At points 
K and L, the boundary layers will be of thickness of order 1/M* (cf. Roberts 1967) 
rather than 1 / M .  If their impedance is still high compared with%hat of the walls we 

9 FLM 91 
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FIGURE 6. Cross-section of a circular duct. 

can ignore them. If the periphery has straight portions of finite length parallel to the 
field, the boundary layers there will have a thickness of order l/MB (cf. Hunt & 
Shercliff 1971). We do not consider such cases in this paper. 

In  the absence of acceleration or viscous stress, (12) indicates that 

-j,B = d p / d z  = constant, 

and (8) then implies that aj,/ax = 0, i.e. j ,  = j,(y). The curl of Ohm's law in the form 
j/c. = v x B -grad U indicates that 

g~ av/ax = - aj,/ay, 

c.B(vR - v L ) / x ( Y )  = - d.z/dY, 

(31) 

(32) 

i.e. v varies linearly with x a t  each value of y and 

in which the subscripts R and L indicate values at the right and left boundaries in 
figure 6 and X ( y )  is x, - xL. These thermoelectric problems are seen to include cases 
where vorticity components normal to the imposed field are not suppressed, cf. those 
mentioned by Shercliff (1975) elsewhere. 

We may neglect variation in j, and j R ,  the tangential current densities within the 
respective walls a t  each value of y, for they are large compared with the normal current 
densities if t 9 a. Then current conservation requires that 

t ( j ,  + j R )  +jvX = 0, (33) 

and tdj,/dy = j ,  +j, cot $R. (34) 

there being no other external circuit, 

The boundary condition (20), applied respectively a t  M and N ,  gives 

and 

- 1  &-- ( j ,  cos $, +j, sin 4,) + v, B sin $, = '3 sin $L 
v w  

d b R  j, 1 
VUJ dY 

( - j ,  cos $R + j, sin $B) + VR B sin $R = - sin $R, --- 

which combine with (32) to yield 
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This relation may be written directly as the line integral of Ohm’s law (1) taken round 
a loop consisting of MN and a parallel line dy higher, joined by two short arcs of wall. 
Then j, and j ,  may be eliminated from (33), (34) and (36) so as to  provide a second- 
order, linear, differential equation in j, which may be solved subject to the condition 
that j ,  must be finite a t  K and L. All other quantities are then readily deduced. 

Circular ducts 

As a general treatment is fairly complicated, in order to bring out the physics clearly 
we take the markedly simpler case of a duct of circular cross-section of radius a. (See 
figure 6.) Now $L = $R = $, say, and y = a cos $ while X = 2a sin $. It is now con- 
venient to Fourier analyse &, expressed as a function of @, measured clockwise from 
Oy, into even and odd harmonics: 

& = F,+I:A,cosn$++B,sinn$, n = 1 ,2 ,  ..., 00. (37) 

Now (36) becomes 

a 
- (jR--jL)+a-- :@ ( jx- siz’) + CnB, cosn@ = 0, 
2Uw 

which together with (33) and (34) yields an equation for j,: 

from which 

d2 CT 

a 

CT B, sin n$ 
a C/n2+1 ’ 

- (j, sin $) - Cj, sin $ = - Xn2B, sin n$, 

jzsin$ = --I: 

(39) 

The complementary function must vanish, for j, is finite a t  $ = 0 or rr. It is not sur- 
prising to find that the transverse currentsj, are determined by the odd part of 8, 
which measures the asymmetry of the & distribution. Equation (40) is essentially a 
statement thatj,(y) is a polynomial in y. From this, &/ax can then be evaluated from 
(31). It is inversely proportional to  B. The velocity itself is completely determined if 
we identify vo, the value of v on they axis, by adding (35a, b )  and using (33) so as to get 

which reveals that  vo also is a polynominal in y. The velocity profile can be regarded as 
essentially a superposition of the last, constant term, which corresponds to Chang & 
Lundgren’s (1961) pressure-driven solution for isothermal flow in a conducting circular 
pipe with M $ C (for which the velocity is uniform), upon TEMHD flow without a 
pressure gradient (for which j, = 0). Let us consider further this latter case, in which 
all velocities are inversly proportional to B as usual. 

If & is symmetrically distributed, j, also vanishes and we have again the pure 
situation in which v x B and Seebeck e.m.f.’s can balance, The boundary condition 
(20), with no currents, determines the same value of v at both M and N and, in the 
usual manner characteristic of many high-M duct flows, v also takes this value a t  all 

9-2 
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points along the field line through M and N .  However, if & is asymmetrical, (20) without 
currents would produce conflicting values €or v a t  M and N .  I n  consequence the more 
complicated process described by (38)-(40) ensues. The first term in (41) indicates how 
vo strikes a compromise between the two boundary conditions at M and N .  

Though the antisymmetrical part of & controls the velocity via avlax, it does not 
affect the value of vo and obviously produces no contribution to the overall flow rate. 
I n  fact the mean velocity urn over the pipe cross-section is given by 

for v varies linearly with x, or by 

= (-2) (*) 1+c +z/:ZnA,sinn$sin$d$ 2 

1+c A ,  
= (-2) (z) +Ba’ (44) 

i.e. only the first even harmonic of (37) contributes to the overall flow. By the same 
token, if the flow is blocked, the resulting pressure gradient is determined purely by 
this harmonic. 

It should also be noted that, in the above treatment, we have tacitly assumed that 
the high harmonics of & are sufficiently weak for the associated velocity gradients not 
to rise to a level where the inviscid assumption fails. 

Consider the special case where only first harmonics are present and 

d = &’,+Dcos ($- $), say, 

where q5 is defined in figure 7, P and Q being the points of maximum and minimum 
temperature. We then find that 

. Da sin q5 
jx= - - a i l )  (45) 

i.e.jx takes a uniform value, as doesj,. The uniform current in the fluid flows obliquely. 
I n  this exceptional case, &/ax vanishes and v takes the uniform value 

The TEMHD contribution falls from a maximum to zero as q5 rises from 0 to in, as 
would be expected in view of the tendency of the thermoelectric currents to flow 
parallel to PQ in stationary fluid. At a standstill, d p / d z  is proportional to cos q5 in fact, 
i.e. to the component of j normal to B. In  the absence of d p l d z ,  however, the currents 
flow parallel to B under the influence of the v x B e.m.f.’s. 

This simple behaviour only occurs when a circular pipe is combined with a purely 
sinusoidal 6 distribution and a uniform transverse field, however. 

Some interesting stability questions must arise from the complex velocity profiles 
that occur, particularly when €has asymmetry. If B were lowered its stabilizing powers 
would fall and meanwhile the thermoelectrically driven velocities would rise like 1/B. 
It is probable that steady, thermoelectrically driven turbulence could occur, provided 
the peripheral temperature distribution could be maintained in the face of the changed 
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heat transfer (somewhat enhanced despite the low Prandtl number). On the other 
hand, the nature of the heat sources and sinks might be such that turbulent heat 
transfer, in lowering the peripheral temperature differences, caused subsequent de- 
excitation of the turbulence and an intermittent or cyclic state might occur. It would 
be important thoroughly to understand such phenomena as a safeguard against possible 
thermal fatigue in fusion-reactor blankets, wherever liquid lithium was contained in 
pipes or closed containers. 

Ducts with ‘mixed ’ walls 

All the phenomena discussed by Hunt & Shercliff (1971) that occur when walls are 
wholly or partially non-conducting can be generalized to include TEMHD effects. 
Here we explore merely the case where, in figure 5 ,  the right-hand boundary is a non- 
conducting wall or a free surface (which would be plane). 

As a result, (33) becomes tj,+j,X = 0, which determinesj,, (38) becomes 

j, +j,  cot @R = 0, 

which determines j,, and (35a)  then determines v, directly. I n  fact 

BV --+ 
- dy tcrwsin@L 

(47) 

The last term vanishes when the walls at M and N are perpendicular. The second term 
on the right is constant for a circular duct. Meanwhile the variation of v with x is 
determined by ( 3  I ) .  There is no such variation if d p / d z  andj, vanish or if @R is constant, 
i.e. the right-hand wall or free surface is plane. Under these conditions the velocity a t  
all points along each particular field line is constant and is determined purely by the 
Seebeck boundary condition (20) a t  the point where the line cuts the one, thermo- 
electrically active interface. More generally, (31) and (47) indicate that a t  each value 
of y, the velocities are determined purely by the various conditions that prevail along 
the particular field line, including the curvature of the non-conducting wall. 

5. TEMHD in industrial metallurgy 
It is reasonable to look for applications of TEMHD in metallurgical processes in 

view of the high temperature gradients that  are commonly present. I n  existing applica- 
tions of MHD to metallurgy, other than those where a high current is imposed directly 
(as in arc furnaces, welding, aluminium smelting, etc.), i t  is normally necessary to 
induce the current by the use of alternating fields and then there are difficulties 
because skin effect inhibits their penetration, particularly when the liquid metal is 
shielded by solidified metal as in casting processes. If the current could be of thermo- 
electric origin, then steady magnetic fields could be used and the problem of poor 
penetration could be circumvented. The most appropriate goal of applying MHD in 
this way would appear to be to promote stirring so as to avoid or disperse non- 
uniformities or to break up incipient dendrites. 

At first sight the advancing interface between the solid and liquid phase as a melt 
solidifies would appear to be a ready source of thermoelectric effects, because most 
metals change their thermoelectric power on melting, but this is foiled by the fact that 
the phase boundary is normally isothermal, i.e. the peripheral temperature gradient, 
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vital in condition (ZO), is lacking. A more promising source of thermoelectric activity 
occurs when there is a variation of thermoelectric power owing to  segregation of 
impurities. If there is also a temperature gradient and an imposed magnetic field of 
suitable magnitude and orientation, it is conceivable that desirable TEMHD stirring 
of the molten metal could occur in the vicinity. There could be automatic dispersion of 
patches of impurity as they formed and an improved quality of the product. This is 
highly speculative, as little information is available on the likely magnitudes of thermo- 
electric effects of this kind, but it appears t o  be worth pursuing further in view of the 
benefits i t  might offer. Some experimental data are badly needed. 

Here we confine ourselves to solving a fairly simple problem as a preliminary 
indication of some of the theoretical possibilities. It is a case with high symmetry, which 
allows an analytical solution, and in fact results in no dispersal of the postulated non- 
uniformity of composition, but it is probable that stirring would occur in less sym- 
metrical configurations. It typifies those cases in which the thermoelectric action is 
due to  continuous variation of material composition rather than a sharp interface. 

We assume that there is a spherically symmetric distribution of 8, centred on the 
origin, and that there are a uniform magnetic field B and a uniform temperature 
gradient, parallel to each other, in the z direction, say. The implicit assumption is that  
the variation of material composition does not affect the thermal conductivity. We 
assume also that the viscosity and electrical conductivity are uniform. The problem, 
being axisymmetric, is conveniently treated in cylindrical polar co-ordinates ( r ,  8, 2). 

The active term, grad X x gradT, in the curl of Ohm’s law is an azimuthal vector, 
-as is curl j, so the currents circulate in meridional planes, producing azimuthal j x B 
forces and azimuthal velocities which do not produce any thermal convection effects. 
The resulting v x B e.m.f.’s are in meridional planes and modify the current pattern. 
We neglect inertial effects, thereby suppressing centrifugally driven secondary motions 
in meridional planes, which would of course produce desirable stirring. It is convenient 
to use the azimuthal induced field H as a vector potential for the currents, with 
j = curl H, but we ignore its effect on the imposed field. 

The curl of Ohm’s law (1)  then becomes 

curl curl H/v = B(a/az) v - grad S x grad T 

7 curl curl v = B(a/ax) H, 

(48) 

and the balance between viscous and j x B forces is expressed by 

(49) 

there being no azimuthal pressure gradient. If we set 

and 

then w1 obeys the decoupled equation 

- curl curl w1 + - B -’ = - grad S x grad T, (;la 2 (3 
while w2 can be found by changing the sign of z .  To represent a diffuse spot of impurity 
we shall take the particular distribution 

X = K exp [ - (r2 + z2)/u2] + S,, (52)  
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which defines the length scale a, upon which the Hartmann number M = Ba(cT/y)* 
can be based. Let IgradTI = L. Then, if w, = JwlI,  (51) yields 

The boundary conditions are that v, H and so w1 and w2 vanish on the axis (r = 0)  and 
tend to zero far from the origin. It proves possible to satisfy all conditions by taking 

w1 = 2KL(u/?)*rUl(R) exp (&M2- Mz/2a) ,  (54) 

in which the dimensionless quantity Ul is a function purely of R, where 

i.e. R is a dimensionless radius vector measured from an offset origin ! Ul must satisfy 
the ordinary differential equation 

d2UI 4dU, 
y+--- - Ul = exp(-R2), 
dR R d R  (f)2 

together with the conditions that RU, --f 0 as R + 0,  and that, as R -+ CO, RU, -+ 0 
faster than e-OfR in order that w, + 0 at large negative x despite the exponential 
factor in (54). The solution is 

nt exp (&M2) 
4R [(l +&MR)e-lMRerfc(iM-R)-(l-iMR) exp ( - R2) - 

U = - (  1 
4R2 

x eiMRerfc ($M + R)] , (57) 1 
from which w1 follows. As R --f 0,  Ul + ( 4 M 2  - 32 - &n*M3 exp ( A M 2 )  erfc (&M) .  w2 
can be generated by a change of sign of z, and then IvI and I H I can be found from 

Ivl = 4(W1-W2), JHI = &(Wl+W2) (W*. (58)  

Figures 7 and 8 show some typical results. The broken lines are the circles on which 
8-  X, equals $K, +K or ZK. The current, field lines are contours upon which r [HI is 
constant. As M rises, the disturbance becomes increasingly extended in the direction 
of the magnetic field as one would expect. As B varies, the maximum velocity 
0.044997 aKL(a/y)i occurs a t  z /a  = 1.193, r / a  = 0.996 when M = 3.863. Figure 4 also 
shows how the maximum velocity varies as B varies and compares it with the case of 
Hartmann flow. Once again there is a transition from variation like B (at low M )  to 
variation like B-1 (at high M ) .  

When M 9 1, the absence of significant viscous drag removes the need for currents 
and so v x B balances the Seebeck e.m.f.’s, i.e. the left-hand side of (48) can be set to 
zero. The resulting solution is simply 

which implies a disturbance that persists indefinitely a t  large 121. I n  fact viscous effects 
would always attenuate the disturbance ultimately, however large M was. From (59) 
the maximum value of ( v l / a R L ( ~ ~ / v ) h  is 0.7602/M at large z and r / a  = 2-4, and this 
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0. 1 2 3 4 5 6 
zla 

FIUURE 7. TEMHD due to an impurity spot at M = 0: (a) current pattern 
constant velocity. The values shown on the contours are 

(a) - 40rlHl/au2KL and (b)  200q/v(/aaZBKL. 

and (b )  contours of 
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FIQURE 8. TEMHD due to an impurity spot a t  M = 15: (a )  current pattern and (b )  contours of 
constant velocity. The values shown on the contours are 

(a )  - 200rlHl/aaaKL and (6) 200lvl/aKL(a/v)f. 

asymptotic variation is also shown in figure 4. If dispersion of an impurity patch is the 
aim, there is no incentive to generate motion remote from it, however. 

As M -+ 0, the v x B e.m.f.’s become negligible and H is directly determinable from 
(48) (or from (57) with M = 0) as 

(60) 
uKLr 

IH1 =w {2Rexp( -R2)-derfR}. 

Then from (49), or otherwise, we have 

BuKLrz I v l  = jf3yR5 (6R exp ( - R2) + (2R2 - 3) nt erf R). 

Figure 7 shows this case. The velocity contours now have symmetry about the line 
r = z. 

The oppositely directed swirls for z >< 0 could lead to instability and hence to stirring, 
despite the axisymmetry of the unperturbed flow, although inertia forces would 
probably be small. 

To establish plausible orders of magnitude, consider the following values (in S.I. 
units): a = 10-3 (a small, 1 mm spot), K = 10-6 (i.e. 1 ,uV/OK), L = lo3 (Le. 10 OC/cm), 
(r = los, 9 = (typical of liquid metals). The maximum swirl velocity v1 is then 
1.5 x lop3 (1.5 mm/s), which is quite high, given the small scale. 

At a convenient field level of B = 0-2 (2000 gauss), M = 6 (i.e. not far from the 
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maximum velocity point) and the interaction parameter aB2a/pv, takes the large value 
of 10, approximately, if we choose p FZ 3 x lo3 (e.g. aluminium). This implies that 
secondary velocities u2 (in meridional planes) will be about one tenth of ul, being 
opposed by j x B forces such that 

pv:/a M uv2 B2. 

Our neglect of inertial terms is thus seen to be a reasonable first approximation. 

6.  Concluding remarks 
While we need be under no illusions that TEMHD is a subject of massive, central 

importance in science or technology, the fact that the order-of-magnitude calculations 
in §§  3 and 5 and also preliminary experiments with mercury in copper indicate readily 
measurable and significant effects is sufficient justification for this new hybrid subject 
to  receive some attention. This paper has indicated some of the possibilities. It should 
be noted again that we have confined ourselves here to cases where the temperature 
distribution is not affected by changed thermal convection due to TEHMD motion, 
or at least the crucial temperature distribution along a wall is known ab initio. The more 
demanding problems that involve a mutual coupling of the thermal and MHD fields 
still remain to  be tackled. It is interesting to speculate whether there are geophysical 
applications of TEHMD also. 
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